CIPARS Human Surveillance Component

Salmonella and Campylobacter AMR – 2023 Results

Presented by Melissa MacKinnon, PhD, MSc, DACVS-LA, DVM

World Antimicrobial Resistance Awareness Week

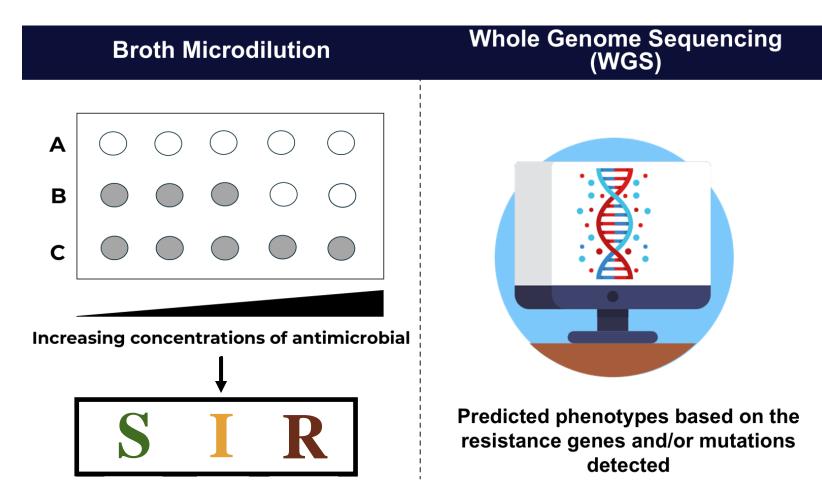
November 19, 2024

Agenda

- Background
- Salmonella
- Campylobacter
- Take away messages
- Questions

AMR descriptions and colour gradient used throughout presentation

Description	Resistance (%)	Gradient
Rare	< 0.1%	
Very low	0.1% to 1%	
Low	>1% to 10%	
Moderate	>10% to 20%	
High	>20% to 50%	
Very High	>50% to 70%	
Extremely High	>70%	


https://www.efsa.europa.eu/en/efsajournal/pub/7867

2

Methods for AMR evaluation

Campylobacter

Salmonella

3

Salmonella **Campylobacter** For **CIPROFLOXACIN**, For **CIPROFLOXACIN**, use CLSI breakpoint to cannot discriminate classify MICs as either between resistant and susceptible, intermediate intermediate using the or resistant resistance genes Report as resistant Report as non-susceptible I/R

Human Salmonella

Public Health Agence de la santé Agency of Canada publique du Canada

Most non-typhoidal *Salmonella* infections do NOT require treatment with antimicrobials

- Non-typhoidal Salmonella have an animal reservoir and typhoidal Salmonella do not
- Non-typhoidal Salmonella infections most commonly cause self-limiting diarrhea
 - Treatment with antimicrobials is not required or recommended
- Treatment with antimicrobials is considered:
 - When clinical signs are severe or prolonged
 - >6 diarrheal episodes/day, bloody diarrhea, diarrhea lasting >1 week, persistent fever
 - When patient is immunocompromised
 - Treatment options include ciprofloxacin, azithromycin (alternative) or trimethoprimsulfamethoxazole (alternative)

Invasive Salmonella infections require treatment with antimicrobials

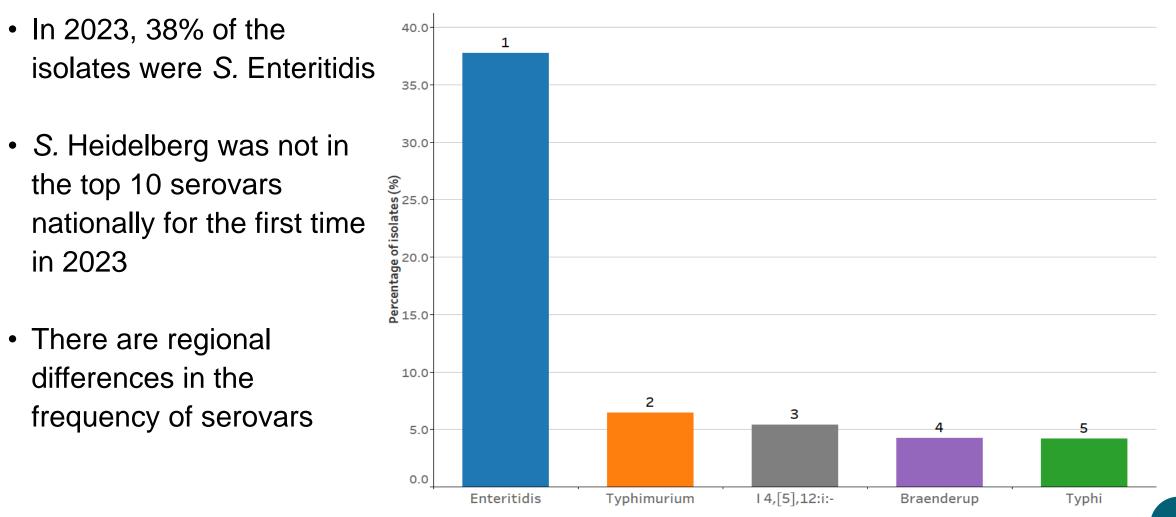
- Typhoidal Salmonella infections most commonly cause bloodstream infections
- Invasive infections including bloodstream infections can occur with non-typhoidal Salmonella infections, but are less common than gastrointestinal infections
 - Treatment with antimicrobials is required
 - Treatment options include ceftriaxone, ciprofloxacin, or trimethoprimsulfamethoxazole

Salmonella has the highest incidence rate of the enteric pathogens tracked by NESP

• Incidence rates of Canadians with Salmonella in 2023

	2023 Incidence Rates* (Cases/100,000 population)
Total Salmonella	15.67
Non-typhoidal Salmonella	14.47
Typhoidal Salmonella	1.20

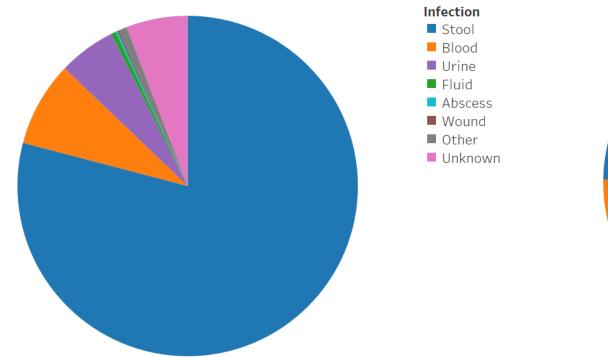
*2023 incidence rates are preliminary and subject to change with final validation of the data

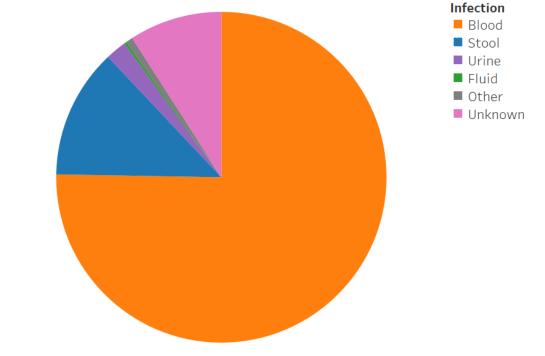

Source of data – National Enteric Surveillance Program (NESP) - Canada.ca

CIPARS human Salmonella surveillance reports temporal and regional variation in the prevalence of AMR

- Reporting of *Salmonella* infections is mandatory through laboratory notification of reportable diseases to the National Notifiable Disease Reporting System
 - However, forwarding of *Salmonella* isolates to provincial reference laboratories is voluntary and passive
- Isolates undergo whole genome sequencing
 - Predictive serotyping with SISTR
 - AMR prediction using Staramr
- Data from 2019-2023 are presented

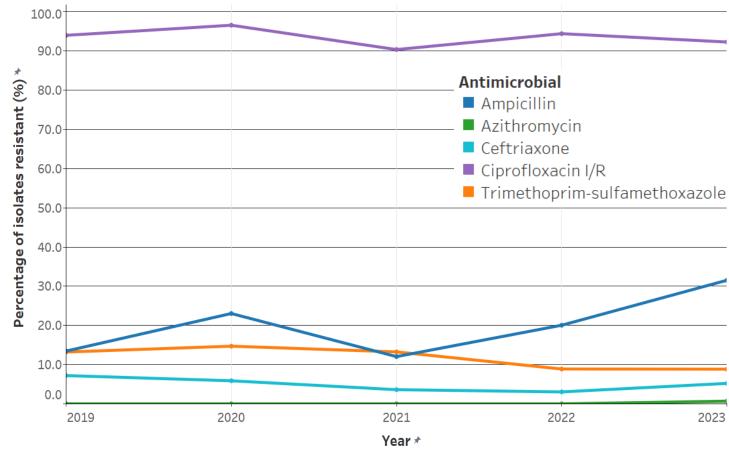
Human Salmonella Serovars


S. Enteritidis has been the top serovar nationally since 2005; ranking of other serovars varies from year to year


CIPAR

Non-typhoidal Salmonella generally from non-invasive infections, whereas typhoidal Salmonella generally from invasive infections

 Non-typhoidal Salmonella predominantly from gastrointestinal infections (79% stool in 2023)


 Typhoidal Salmonella predominantly from bloodstream infections (75% blood in 2023)

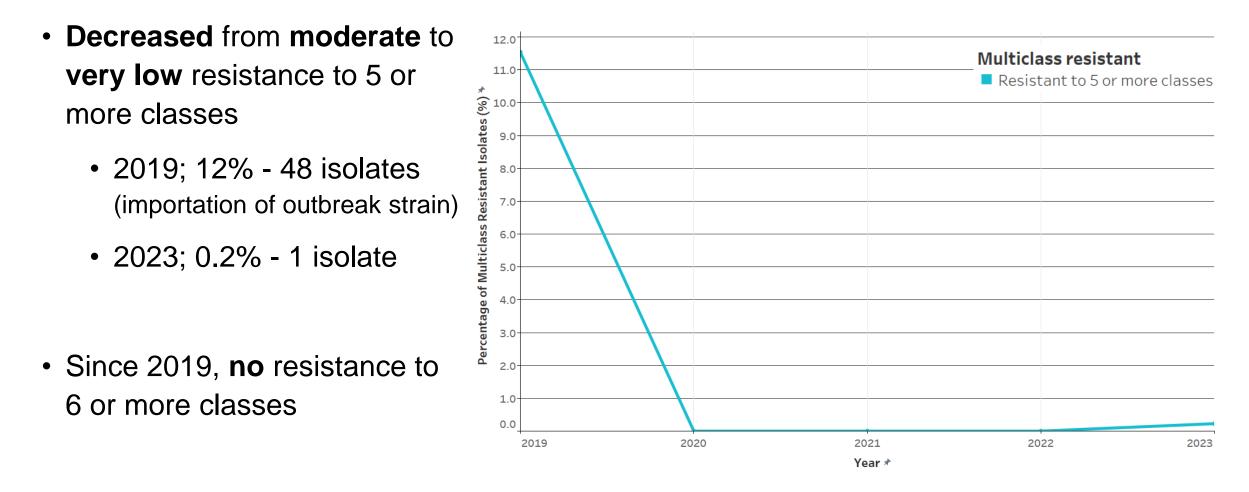
CIPA

Extremely high non-susceptibility to ciprofloxacin has implications for treatment selection

- Extremely high non-susceptibility to ciprofloxacin (ranging from 90% to 97%)
- Low resistance to ceftriaxone; decreased from 2019 (7%) to 2022 (3%) and increased in 2023 (5%)
- Moderate resistance to ampicillin increased to high resistance (2019; 14% and 2023; 32%)
- **Moderate** resistance to trimethoprimsulfamethoxazole **decreased to low** resistance (2019; 13% and 2023; 9%)
- No resistance to azithromycin from 2019-2022 and very low resistance in 2023 (0.7%)

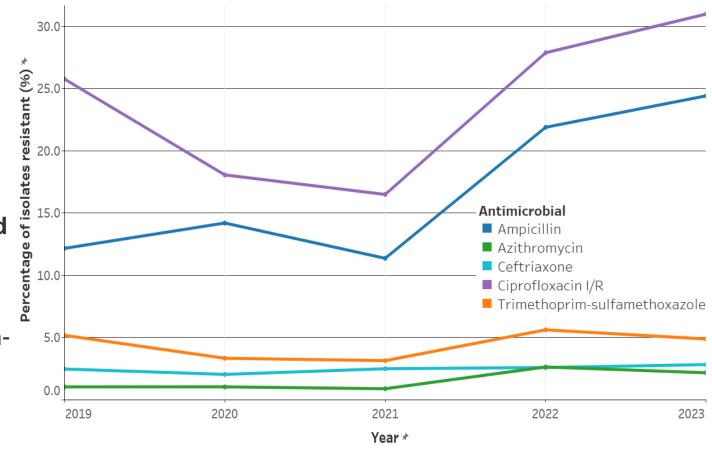
Wide regional variation, sparse data and small numbers of isolates make interpretation of regional difference challenging

Region	2	019	2	020	2	021	2	022	2	023											
Negion	% R	Total	% R and Gra	dient																	
	AMP	Isolates	< 0.1%																		
National	14	416	23	204	12	83	20	394	32	441	0.1 - 1%										
											>1 - 10%										
Atlantic	0	2			0	2	25	25	25	25	25	25	25	<mark>25</mark> 8	8	8	0	0 7	7	>10 - 20%	
British	0	84	6	32	16	19	3	76	0	99	>20 - 50%										
Columbia											>50 - 70%										
Ontario	21	236	25	124	9	46	31	204	53	231	>70%										
Prairies	5	72	41	34	9	11	8	85	15	79											
Québec	9	22	0	14	40	5	19	21	20	25											

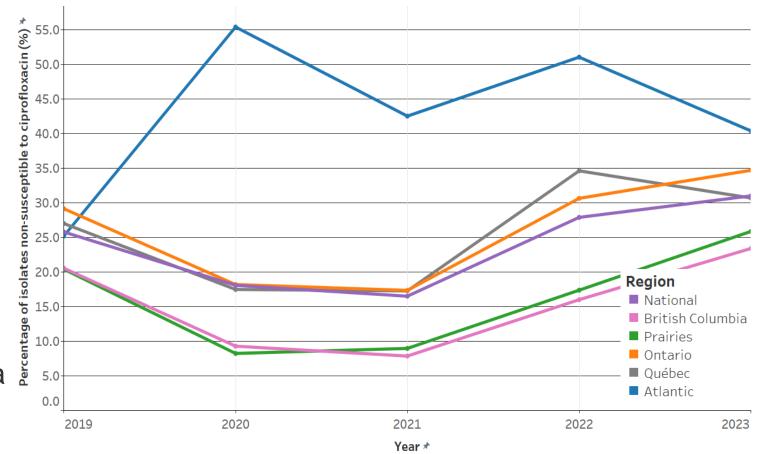

Bolded numbers highlight < 20 total isolates tested

Increasing resistance to 2 or more classes and extremely low full susceptibility

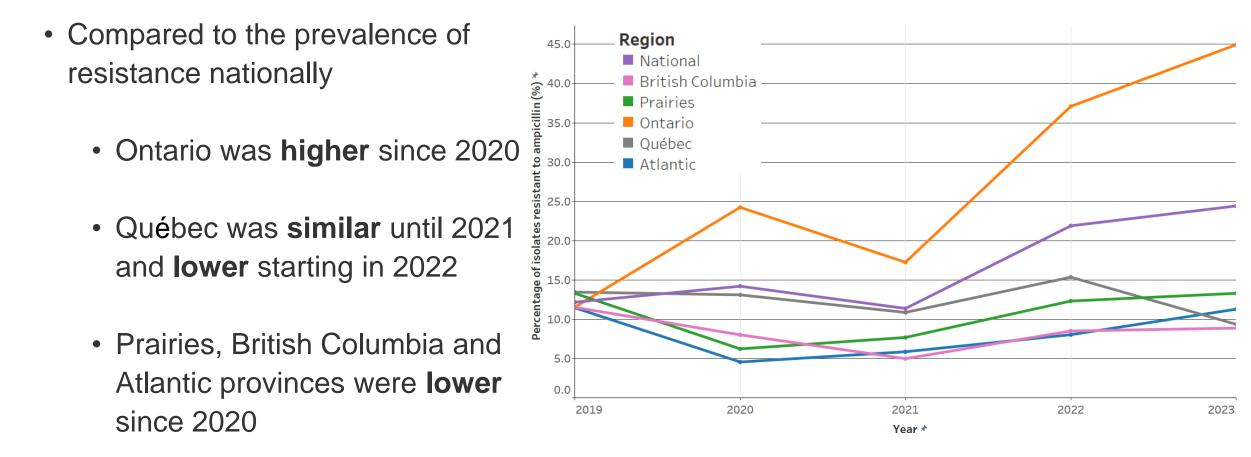
- Variable full susceptibility (2019; 6% and 2023; 7%)
- Variable and increased from moderate to high resistance to 2 or more classes (2019; 14% and 2023; 32%)
- Decreased from moderate to low resistance to 3 or more classes (2019; 14% and 2023; 10%)



Decreasing resistance to 5 or more classes (returned to expected prevalence)


Increasing non-susceptibility to ciprofloxacin and resistance to ampicillin

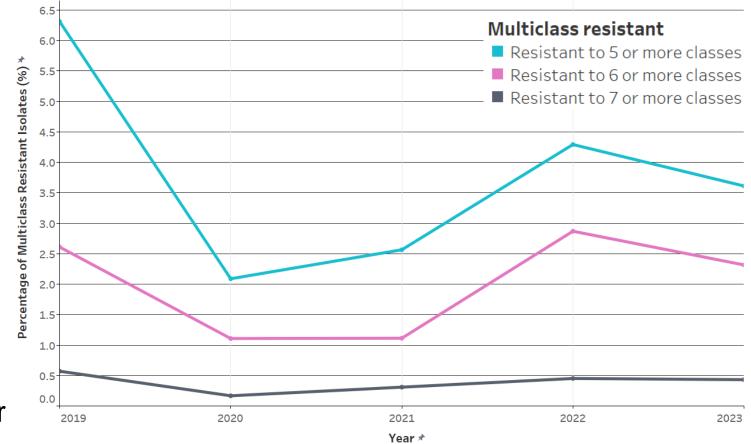
- High non-susceptibility to ciprofloxacin decreased to moderate between 2019 (26%) and 2021 (17%), but increased to high in 2022 (28%) and 2023 (31%)
- Low and relatively stable resistance to ceftriaxone (ranging from 2% to 3%)
- Moderate resistance to ampicillin increased to high resistance (2019; 12% and 2023; 24%)
- Low and variable resistance to trimethoprimsulfamethoxazole (ranging from 3% to 6%)
- Low resistance to azithromycin increased between 2019 (1%) and 2022 (3%) and decreased slightly in 2023 (2%)



Substantial regional variation in non-susceptibility to ciprofloxacin

- Compared to the prevalence of non-susceptibility nationally
 - Atlantic provinces were higher since 2020
 - Ontario and Québec were similar
 - Prairies and British Columbia were **lower** and follow a similar trend

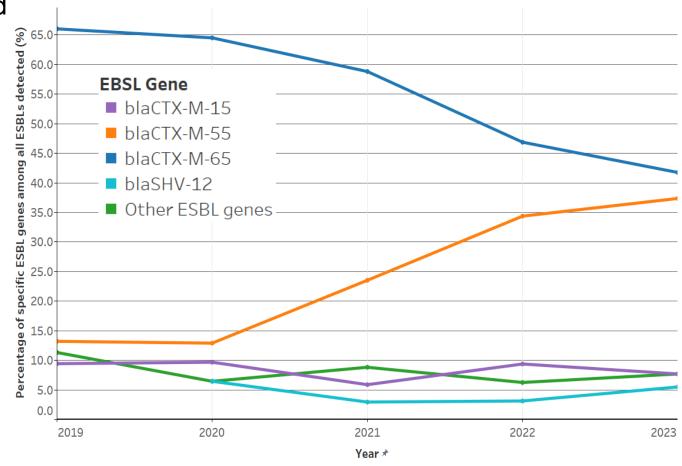
Substantial regional variation in ampicillin resistance


10%)

Increasing resistance to 2 or more classes and decreasing full susceptibility

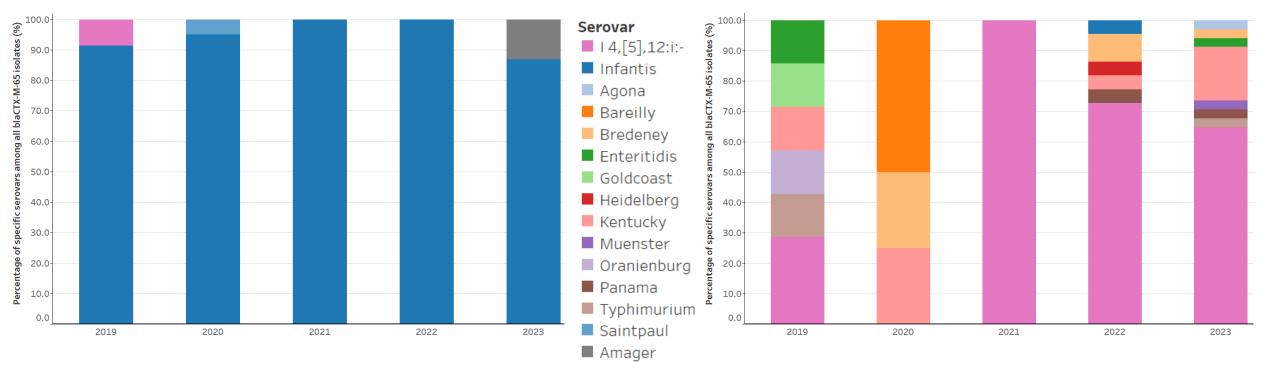
 Decreased full susceptibility since 75.0 70.0 2021 (2021; 71% and 2023; 52%) ÷ 65.0 (%) 60.0 55.0 Moderate resistance to 2 or more 50.0 Resista 45.0 classes, increased since 2021 40.0 Multiclass Multiclass resistant (2021; 11% and 2023; 17%) 35.0 Fully susceptible 30.0 Resistant to 1 or more classes of Resistant to 2 or more classes 25.0 Resistant to 3 or more classes • Low to moderate resistance to 3 20.0 15.0 or more classes, relatively stable 10.0 since 2020 (2020; 9% and 2023; 5.0 0.0 2019 2020 2021 2022 2023 Year 🖈

Very low and stable resistance to 7 or more classes


- Low resistance to 5 or more classes, decreased between 2019 (6%) and 2023 (4%)
- Low and variable resistance to 6 or more classes (ranging from 1% to 3%)
- Very low and stable resistance to 7 or more classes (ranging from 0.2% to 0.6%)
- Since 2019, no resistance to 8 or more classes

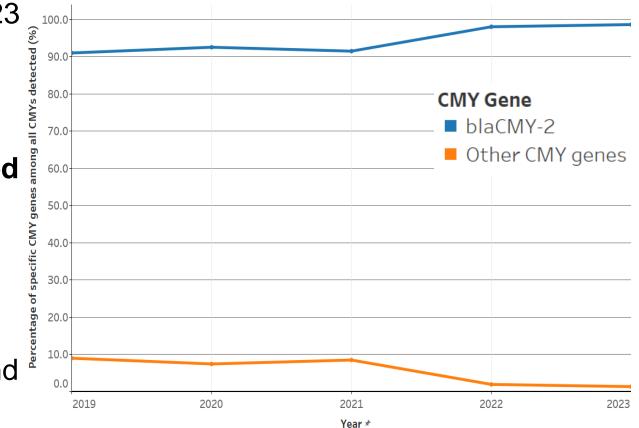
Overall ESBL genes in human non-typhoidal Salmonella are increasing with *bla*_{CTX-M-65} decreasing and *bla*_{CTX-M-55} increasing

- Top 4 ESBL genes among ESBLs detected
 - bla_{CTX-M-65} decreased between 2019 (66%) and 2023 (42%)
 - bla_{CTX-M-55} increased between 2019 (13%) and 2023 (37%)
 - bla_{CTX-M-15} variable from 2019 to 2023 (ranging between 6% and 10%)
 - bla_{SHV-12} variable from 2020 to 2023 (ranging between 3% and 7%)
- Other ESBL genes detected


 $bla_{CTX-M-1} bla_{CTX-M-8} bla_{CTX-M-9} bla_{CTX-M-14}$ $bla_{CTX-M-14b} bla_{CTX-M-27} bla_{CTX-M-32} bla_{CTX-M-174}$ $bla_{SHV-2} bla_{SHV-30} bla_{TEM-15} bla_{TEM-52B} bla_{TEM-93}$

*bla*_{CTX-M-65} is mostly in *S.* Infantis and *bla*_{CTX-M-55} is mostly in *S.* I 4,[5],12:i:-

• *bla*_{CTX-M-65} predominately in *S*. Infantis



Overall CMY genes in human non-typhoidal Salmonella are stable with bla_{CMY-2} increasing

- CMY genes stable between 2019 and 2023 (ranging between 1% and 2% of all isolates)
- bla_{CMY-2} predominate CMY gene increased between 2019 (91%) and 2023 (99%)
 - Mostly in *S.* Dublin, *S.* Heidelberg and *S.* Typhimurium
- Other CMY genes ranged between 0% and 6% each year

bla_{CMY-4} bla_{CMY-44} bla_{CMY-54} bla_{CMY-61}

XDR Salmonella I, 4 [5], 12:i:- continues to increase

• Extensively drug resistant (XDR) non-typhoidal Salmonella express resistance to ampicillin, ceftriaxone, ciprofloxacin, azithromycin, trimethoprim, and sulfonamides

Year	# of XDR	Ages 0-2yr	Ages 3-9yr	Ages 10-19yr	Adult 20+
2020	0	N/A	N/A	N/A	N/A
2021	8	5	0	0	3
2022	16	6	1	1	8
2023	19	2	4	0	13

- In 2021, **ONE** isolate from a child (0-2yr) was invasive (blood)
- In 2022 and 2023, ALL isolates from children were non-invasive (stool)
- In 2021 all isolates from adults were recovered from stool, 6 isolates from stool were recovered in 2022, and 10 in 2023; the remaining adult isolates were recovered from urine samples with the exception of an isolate of unknown sample orgin in 2022

Human Campylobacter

Human Campylobacter Introduction

Most *Campylobacter* infections do NOT require treatment with antimicrobials

- Campylobacter infections most commonly cause self-limiting diarrhea
 - Treatment with antimicrobials is not required or recommended
- Treatment with antimicrobials is considered:
 - When clinical signs are severe or prolonged
 - >6 diarrheal episodes/day, bloody diarrhea, diarrhea lasting >1 week, persistent fever
 - When patient is immunocompromised
 - Treatment options include azithromycin or ciprofloxacin (alternative)

bugsanddrugs.org/CFF1EDAF-526D-4B32-852A-25E3E7F1872E

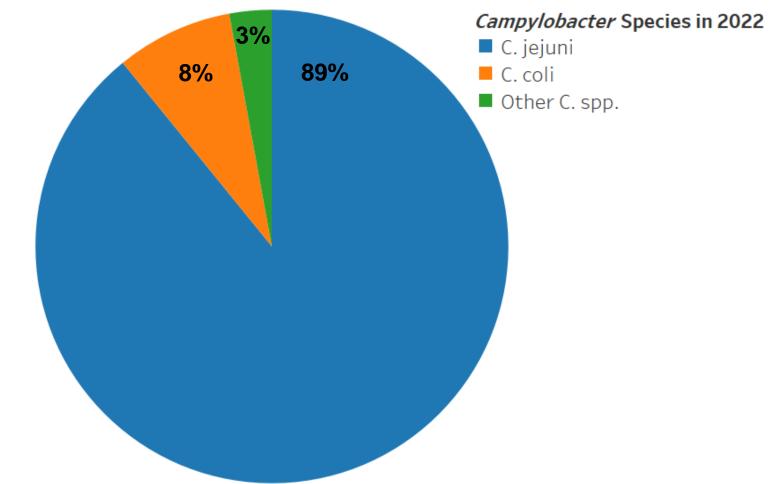
Campylobacter has a high incidence rate in Canadians

• Incidence rates of Canadians with Campylobacter in 2022

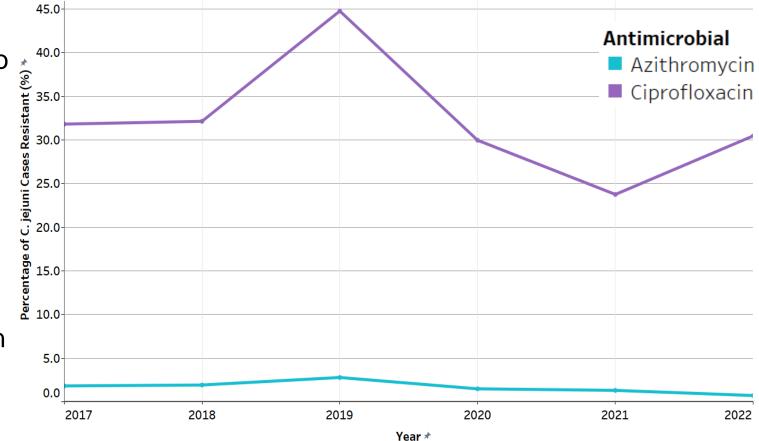
	2022 Incidence Rates (Cases/100,000 population)		
Campylobacter	18.72		

 Source of data – Canadian Notifiable Disease Surveillance System (CNDSS) <u>Notifiable Diseases Online</u>

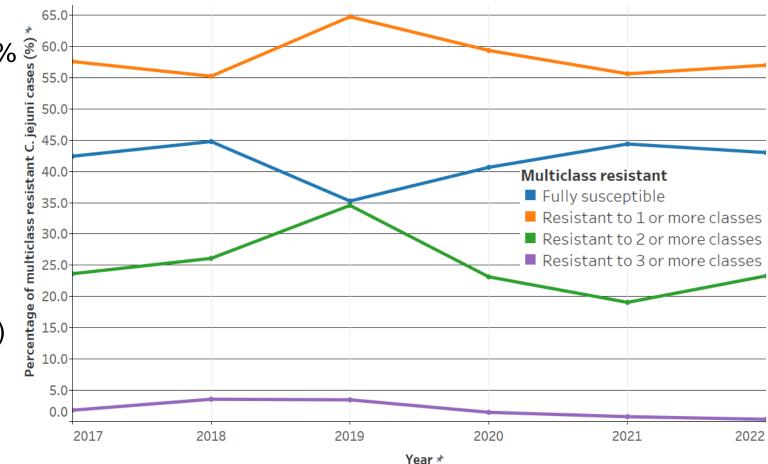
FoodNet Canada (FNC), the integrated sentinel site surveillance network for enteric disease in Canada


- Campylobacter isolates forwarded for antimicrobial susceptibility testing are a subset of all FNC Campylobacter cases
- Tested using broth microdilution for susceptibility to nine antimicrobials
 - For all antimicrobials including ciprofloxacin, only isolates classified as resistant are reported as resistant
- 3% of cases were excluded due to unresolved data discrepancies
- Data from 2017-2022 are presented with all sentinel sites combined

C. jejuni is the predominant Campylobacter species in humans


 In 2022, 89% of the cases were *C. jejuni*

 Campylobacter predominantly causes gastrointestinal infections (100% stool in 2022)


Lower resistance to azithromycin compared to ciprofloxacin

- *C. jejuni* (figure)
 - Variable and high resistance to ciprofloxacin, 31% in 2022
 - Decreasing and low to very low resistance to azithromycin, 0.7% in 2022
- C. coli (2017-2022 combined)
 - High resistance to ciprofloxacin (46%)
 - **Moderate** resistance to azithromycin (13%)

Resistance to 3 or more antimicrobial classes in *C. jejuni* was low to very low

- *C. jejuni* (figure)
 - Variable full susceptibility, 43% in 2022
 - Decreasing and low to very low resistance to 3 or more classes, 0.4% in 2022
- C. coli (2017-2022 combined)
 - Lower full susceptibility (36%)
 - Moderate resistance to 3 or more classes (13%)

Cases with resistance to 5 or more antimicrobial classes are infrequent; could complicate treatment, if required

Species Year		Resistance Pattern					
		5 Antimicrobial Classes	6 Antimicrobial Classes				
C. jejuni	2018	CIP-NAL-ERY-AZM-TEL-TET-CLI-FLO					
C. jejuni 2019	CIP-NAL-ERY-AZM-TET-CLI-GEN	CIP-NAL-ERY-AZM-TET-CLI-FLO-GEN					
	NAL-AZM-TET-CLI-GEN						
C. coli	2020		CIP-NAL-ERY-AZM-TET-CLI-FLO-GEN				
C. jejuni	2021	CIP-NAL-ERY-AZM-TET-CLI-GEN					
C. coli	2022	CIP-NAL-ERY-AZM-TET-CLI-GEN					
		CIP-NAL-ERY-AZM-TET-CLI-GEN					

Antimicrobial classes

Quinolones Macrolides/ketolides **Tetracyclines Lincosamides Phenicols Aminoglycosides**

Take Away Messages – Human Campylobacter

- C. jejuni is the predominant Campylobacter species in humans
- Lower resistance to azithromycin (2022; 0.7%) in *C. jejuni* compared to ciprofloxacin (2022; 31%)
- Resistance to 3 or more classes in *C. jejuni* was low to very low
- Cases with resistance to 5 or more antimicrobial classes are infrequent, however, they could complicate treatment, if required

Take Away Messages – Human Salmonella

- Extremely high non-susceptibility to ciprofloxacin in typhoidal Salmonella
- Increasing frequency of non-susceptibility to ciprofloxacin and resistance to ampicillin in non-typhoidal Salmonella
- Regional variation in Salmonella antimicrobial resistance is important to consider
- Overall ESBL genes in human non-typhoidal Salmonella are increasing with bla_{CTX-M-65} decreasing and bla_{CTX-M-55} increasing

Where can I find more information?

CIPARS Interactive data visualizations

https://www.canada.ca/en/public-health/services/surveillance/canadian-integrated-programantimicrobial-resistance-surveillance-cipars/interactive-data.html

CARSS Interactive data visualizations

Human Salmonella: https://health-infobase.canada.ca/carss/amr/results.html?ind=13

CIPARS website

https://www.canada.ca/en/public-health/services/surveillance/canadian-integrated-programantimicrobial-resistance-surveillance-cipars.html

FNC website

https://www.canada.ca/en/public-health/services/surveillance/foodnet-canada.html

Acknowledgements

- •NML Division of Enteric Diseases and PulseNet Canada
- Provincial Public Health Laboratories
- •FoodNet Canada (*Campylobacter*)
- •FoodNet Canada Sentinel Sites (Campylobacter)
- •National Enteric Surveillance Program (NESP)

Questions

Contact Information for CIPARS Human Component

Dr. Melissa MacKinnon melissa.mackinnon@phac-aspc.gc.ca

Public Health Agence de la santé Agency of Canada publique du Canada

